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Abstract

The study presents an approach to depict the two first order moments of runoff as a
function of area (and thus on a map). The focal point is the mapping of the statisti-
cal properties of runoff q=q(A,D) in space (area A) and time (time interval D). The
problem is divided into two steps. Firstly the first order moment (the long term mean5

value) is analysed and mapped applying an interpolation procedure for river runoff. In
a second step a simple random model for the river runoff process is proposed for the
instantaneous point runoff normalised with respect to the long term mean. From this
model theoretical expressions for the time-space variance-covariance of the inflow to
the river network are developed, which then is used to predict how the second order10

moment vary along rivers from headwaters to the mouth. The observation data are
handled in the frame of a hydrological information system HydroDem, which allows
displaying the results either in the form of area dependence of moments along the river
branches to the basin outlet or as a map of the variation of the moments across the
basin space. The findings are demonstrated on the example of the Moselle drainage15

basin (French part).

1 Introduction

Mapping statistical parameters of runoff across space constitutes one of the funda-
mental tasks in hydrology. As the probabilistic characteristics of the runoff formation
process are a priori unknown, the only direct source of information for solving this20

task is hydrological observations series. Hydrological series, however, may be too few
and/or too short for a reliable determination of quantitative runoff characteristics, or
even not available at all. In this case hydrology turns to indirect approaches for the
study of runoff distribution in space, namely the “geographical interpolation” (in some
sense) of the parameters of the runoff distribution. This is done utilizing hydrological25

series for different sites in a large river basin or different river basins within a region.
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Such studies fall under what is vaguely defined as “regional hydrology”, to which this
paper is a contribution.

The main hydrometerological processes (rainfall, evapotranspiration, temperature
etc.) when observed at the land surface develop in a three-dimensional space – the
two geographical coordinates (x, y) and time t. The variation of these variables across5

space is described as contour (isoline) maps in classical works, i.e. they are space-
filling phenomena and allow straightforward interpolation. River discharge (surface
runoff), on the other hand, is formed in a two- dimensional space – the distance along
a river lA (related to the point with area A in a basin) and time t. This relationship to
the area (and not the (x, y) coordinates) explains why the variation of runoff charac-10

teristics across space, determined from discharge measurements, cannot be exposed
as a contour map as simply as hydrometerological variables. Neither can it be directly
claimed that it is a space-filling phenomenon.

The contradiction in mapping runoff characteristics was noted early by Gergov (1972)
with respect to the runoff “module”. This latter concept, very often found in Central15

and East European hydrological literature, can have three interpretations – 1) the true
specific runoff q1 with which a point (x, y) in a basin contributes to the runoff in the
river (rainfall excess; in the general case this might not be a space filling variable);
2) the areal mean runoff in a point lA in a river derived as q2=Q/A (where Q is the
mean annual discharge and A the area of the corresponding basin); 3) the derivative of20

the specific runoff q3=dQ/dA , i.e. the contribution of runoff to the river reach for each
increment in the area. For all cases the dimension of runoff is volume per area and
time [L3/(L2 T)], and in hydrology either [l/km2/s] or [mm/year] is used. Herein the latter
of the two will be used.

This study presents an approach to depict runoff as a function of area (and thus on a25

map) though not in terms of a deterministic relationship but on how its statistical prop-
erties (mean value and variance) develop with area. The approach does not fully solve
the theoretical ambiguities in mapping runoff but permits a reasonable simplification of
the problem. We thus accept that runoff can be looked upon as a random variable in
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the two dimensional space q=Q/A=q(lA, t)=q(A,t). Consequently we accept the sec-
ond definition given earlier, which also implies that runoff is only defined along a river
network. We further note that runoff characteristics can be expressed for an instance
t in time only in theory. In reality observations of discharge allow us to estimate runoff
for a certain time resolution D in time (an hour, a day, five days, a month, a year). Map-5

ping runoff characteristics involves thus mapping of statistical properties (moments) of
q=q(A,D) in space A and time D which is the focus for the present study. This task is
similar to studying scale dependence in moments of runoff in space A and time D.

The mean value as well as the variance show large variability across space revealing
a non-homogeneous random process. In general there exists a great coherence be-10

tween the variability of these two moments i.e. a significant part of the variability of the
variance might be explained by the pattern of variability of the mean. The mean value is
independent of the used time interval D, while this is not the case for the variance. The
variance is reduced in relative terms the more the longer the time interval D is. Fur-
thermore, the variance reduces also in relative terms due to averaging over the basin15

area (the support of the random process), the larger the basin area the more reduction.
The full temporal-spatial covariance structure of the runoff process needs to be known
to be able to evaluate this variance reduction due to time and space averaging.

The patterns of spatial variability of the mean and variance of runoff that can be iden-
tified from observations are of course influenced by the fact that these observations20

represent averaged values. To be able to map these quantities we need to assume
the existence of an instantaneous point runoff (IPR) process. The task is thus to solve
the inverse problem of identifying this process from the observations representing av-
erages in time and space. In a second step we are able to average this IPR process
along rivers to achieve the desired map.25

For the mean values this task is rather straightforward and basically is a problem
of stochastic interpolation with local support or in another vocabulary block kriging.
An obstacle might be the complexity in the structure of the covariance of runoff as
the data represent a mixture of nested and non-nested basins. This problem has
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been studied by Gottschalk (1993a) and the theoretical findings of in this study will
be brought forward here. Gottschalk (1993b) introduced a method for stochastic inter-
polation of runoff along the river network with a constraint preserving the water balance,
i.e. at each downstream point in the river the runoff is the sum of the upstream inflow.
Sauquet (2000) and Sauquet et al. (2000) developed this methodology further and5

combined it with a system for structuring hydrographical networks in a hierarchical way
called HydroDem (Leblois and Sauquet, 2000). It allows an effective reconstruction of
the variation of mean annual runoff (first order moment) along the river network in a
basin from discharge observations and a DEM. This latter interpolation scheme will be
followed here to map the mean value. The resolution of the underlying DEM defines10

the size of computational units (grid cells, sub-basins). It is further assumed that each
unit contains a segment of a river (“a flow path”). The difference between the definition
of runoff “module” (specific runoff) q1 and q2 is eliminated by this assumption and all
the territory is assigned a runoff value down to the scale of basic computational units.

The pattern of variability of the variance identified from observations is still more15

complex than in case of the mean. There are two sources of variability. The first
one is a reflection of the natural variability of the IPR process. This is then overlain by
variability induced by the variance reduction which varies with the support i.e. the basin
area. This part of the variability might constitute a significant part of the total variability.
As such it introduces a dependence on the basin area. In principle, it would be possible20

to also solve this problem with stochastic interpolation with local support. A constraint
can be added so that the sum of variance-covariances over sub-basins should add
up to the total variance over the whole basin. The authors of this paper have made
several attempts in this direction but they have all failed. The reason is mainly due
inconsistencies in observed data which does not fulfil the proposed constraint.25

The alternative developed herein is as follows. Firstly we benefit from the fact that
the variation pattern of the mean value is also reflected in the variance by introducing
a new variable namely the normalized instantaneous point runoff i.e. IPR divided by
the point mean. For this latter variable a parametric random model is proposed that
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allows constructing a space-time covariance structure for the runoff along rivers and
specifically map the variance along rivers.

The paper is structured as follows. In the first section of the paper the statistical
characteristics of runoff data from the Moselle basin (France) are described which is
used to test the approach. In the next section the method for interpolation of the mean5

is described and the random model for river runoff in a basin is proposed, which allows
calculating variance functions, reductions factors, auto- and cross-correlation. The
derivation of these latter functions is rather laborious and is only briefly presented in
Appendix B. The derived theoretical expressions are then used to model the spatial and
temporal scale dependence in first and second order moments, the autocorrelation10

at a site, and the cross-correlation between sites along rivers of the Moselle basin.
Examples of derived maps of mean annual runoff and coefficient of variation of runoff
of different duration are shown in Appendix A. The paper ends with a discussion of the
results and conclusions.

2 Runoff characteristics of the Moselle river basin15

The study area covers the French part of the Moselle basin, one of the main tributaries
to the Rhine River. The Moselle River basin demonstrates a great variability of the
landscape due to the heterogeneity of the geology (crystalline and sedimentary rocks,
schist, sandstone) and relief under continental climate. The headwaters are located
in the Vosges Mountains covered by forests whereas downstream parts are lowlands20

(alluvial plains) with a landscape influenced by agricultural practices.
A map of the Moselle basin and the drainage pattern identified by HydroDem as well

as the discharge stations are shown in Appendix A. It is complemented by a schema-
tised river network with its eight main branches (Fig. 1). The size of the main basin is
9387 km2 at its outlet at Hauconcourt, France. Within this basin another 16 sub-basin25

with areas in the range 73–3350 km2 have been utilised. The discharge data used are
the breakpoints and it thus allows the estimation of runoff averaged over any duration
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D. Here five durations have been considered, namely: an hour, a day, five days, a
month and a year.

The study focuses on the two first order moments. The first order moment around
zero of the Moselle discharge data are plotted against basin area in a double logarith-
mic diagram in accordance with the traditional way of representing scale dependences5

in Fig. 2. There is a tendency that the data cluster around straight lines but the scatter
is quite large. The first order moments (the long term mean values) do not depend
on the duration D, which is the case for higher order moments. This spatial-temporal
dependence for the second order moment is illustrated in Fig. 3 in terms of the coef-
ficient of variation. For short durations (an hour and a day) this coefficient shows a10

strong decay with the area. This dependence with area decreases with the increase
in duration and for annual values it is negligible. For small catchments the estimated
values differ between one hour and one day data. This difference is almost eliminated
for basins bigger than 1000 km2.

Figure 4 offers an illustration of the empirical auto- and cross-correlations at and15

between runoff stations along the tributary to the Moselle viz. the Meurthe River
(branch 4, cf. Fig. 1) and the outlet site on the Moselle River at Hauconcourt (sta-
tion a793061). It shows the estimated autocorrelation function for the central site in
this river branch (station a627101) for the four different durations considered (a), the
same function for one hour duration for the five sites along the same river branch (b),20

the cross-correlation between the central and outlet site for different durations (c) and
the cross-correlation between the site at the outlet and those upstream (d).

There is a strong autocorrelation in data for small time intervals (hours, days), which
then decreases more rapidly towards larger time scales. However, we can note that
the decay of the correlation is not of the exponential type frequently used in hydrology.25

A heavy tail is observed for large time scales. We interpret this as the existence of
(at least) two characteristic scales – one of the order of one day and another of the
order of one month. Examining the autocorrelation at a site (Fig. 4a) we note that
the correlation increases with increasing time scale from hours, to days, five days and
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months. One would expect a similar although less pronounced behaviour when moving
downstream and the basin size is increased (Fig. 4b). For very small time steps (hours)
this is actually the case. At a larger scale the tail of the correlation function does not
show any clear systematic pattern corresponding to the basin scale, although there
exists a slight tendency of an increased memory when moving downstream along the5

branch. The impression is that the weight of the heavy tailed part of the correlation
varies locally.

The empirical cross-correlation functions show a drop (“nugget”) in the correlation at
lag zero, which is larger the larger the difference in basin size is. At a site this drop is
decreased when the duration increases (Fig. 4c). However, the behaviour at short time10

lags can be quite complex – sometimes with a small increase before decaying and in
other cases an immediate decay (Fig. 4d). For the time being it has not been possible
to explain all the details in the behaviour of the correlation functions.

The spatial correlation, revealed by Fig. 4d for individual sites, would in principle allow
showing the plot of spatial correlation coefficients along and between river branches15

against some distance measure. The structure of such a diagram is, however, quite
complex. Runoff as related to points along rivers is a non-homogeneous process
(Gottschalk, 1993a). Furthermore, nested and non-nested sub-basins show drastic
differences in correlation, very high in the first case and lower in the other. Finally, the
distance measure is not obvious in this case. Should it be an Euclidian distance be-20

tween observation sites, distance between centres of gravity of basins, distance along
rivers between sites etc.? Whatever the used measure, the result is a scatter of points
without structure. For this reason this type of plots is avoided here.

3 Long-term mean annual runoff

Let X (l , t), the inflow to a river at a length coordinate l and in time t, represent a25

two dimensional random field. We allow the long term mean value mX (l ) to vary in
space l but let it be constant in time t. We thus admit that that the runoff production
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systematically can vary from one locality to another in a basin, i.e. the generic process
is non-homogeneous in space. On the other hand stationarity is postulated in time. In
reality runoff shows seasonal variations with more or less stable patterns (Krasovskaia
and Gottschalk, 1992). We will anyhow accept this as a simplification for the time
being.5

The long term mean value mX (l ) characterises the variation in the intensity in runoff
formation across space being a product of the local landscape and climatic features.
This first order moment is not influenced by the dynamics of the runoff formation pro-
cess as the higher order moments are. We are thus able to map mX (l ) with a due
consideration of the fact that it is a variable in a one dimensional space l , the coordi-10

nate along the river network applying stochastic interpolation with local support. We
here will follow the approach developed by Sauquet et al. (2000). Firstly a theoretical
model of an assumed point process is estimated from the empirical covariance func-
tion. This point covariance function is then used for interpolation of runoff to each grid
cell of the Moselle basin following a hierarchical scheme to be able to fulfil a water15

balance constraint along the river.
The covariance between two sites in a nested river system was earlier treated by

Gottschalk (1993a). A simple exponential function is postulated for the correlation of
the inflow to the river between to points l1 and l2 along the river at a distance λ= |l1−l2|:
ρ (λ)=exp

(
−λ

/
K
)
. The constant K has the dimension of length and describes the20

characteristic scale of variation of runoff formation and reflects landscape and long-
term climatic features. An approximate expression for a corresponding covariance
between two nested basins is derived as:

Cov (A1, A2) = Cov (LA1, LA2) =

2σ2
X

(
K 2

LA1LA2

){
LA1
K + 1

2e
−LA1/K + 1

2

(
1 − LA1

K + LA2
K

)(
e−LA2/K − e−(LA2−LA1)/K

)
− 1

2

} (1)

A1 and A2 denote the two areas of sub-basins, where the first is nested within the sec-25

ond, drained by the river segments of lengths LA1 and LA2 (LA1<LA2), where the shorter
one is common. Let us specifically look at the situation when LA1=LA2=LA, i.e. we get
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an expression for the variance over the sub-basins. Insertion into the equation above
yields:

Var (A) = σ2
A = 2σ2

X

(
K
LA

)2 {LA

K
− 1 + e−LA/K

}
(2)

Whether we use area or distance the expression for the covariance between two sub-
basins along the same river anyhow indicates a non-homogeneous process, i.e. it de-5

pends on the absolute coordinates A1(LA1) and A2(LA2) and not the relative difference
between the positions of the points with these coordinates. The covariance along a
river is thus represented by an ensemble of curves conditioned on the position of the
downstream site A2(LA2) as a function of the difference in area (position). For co-
variance between sites in non-nested basins it is not possible to develop close form10

analytical expressions, but it must be derived numerically as a conventional covariance
with local support.

The details of parameter estimation and interpolation follow Sauquet et al. (2000).
The characteristic space scale was estimated to K=50 km (cf. Eq. 1) and the spa-
tial point standard deviation to σX=300 mm/year. The resulting dependence with basin15

area is shown in Fig. 5 and the corresponding map in Appendix A. The figure shows the
empirical data points arranged along river branches. The HydroDem software (Leblois
and Sauquet, 2000), utilised in this study, allows a retrieval of a unique string that ar-
ranges the grid cells on a map in accordance with the structure of the river network,
thus linking the position of the grid cell with the integrated area of the basin at this20

position. Accordingly, we are able to plot the value at each grid cell of the map against
area and they are shown as a grey background in the figure. When scale depen-
dence is studied in the context of a river basin the scale relations develop along river
branches towards a common value at the outlet (this is guaranteed due to the water
balance constraint in the interpolation scheme). The diagram in Fig. 5 reveals the rela-25

tive contribution from the branches to the total discharge. The flow in the main river can
therefore be higher (lower) than the surrounding contribution due to high (low) inflow
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upstream.

4 Normalised instantaneous point runoff

In a second step we now turn to the second order moments with the assumption that
the variation in mX (l ) is known. To achieve homogeneity in space the original process
is normalised with respect to this long term mean:5

Z (l , t) = X (l , t)/mX (l ) (3)

This homogeneous random field in time and space Z(l ,t) is the main focus for the study
with the aim of developing a random model for this variable and specifically deriving
expressions for its variance-covariance function.

For the general formulation of a time-space process Vanmarcke (1988) distin-10

guishes between three important special types of two dimensional covariance func-
tions, namely:

– the covariance structure is separable

– the correlation structure is isotropic, i.e. the covariance structure can be ex-
pressed in terms of the “radial” covariance function15

– the covariance structure is ellipsoidal, i.e. by appropriate scaling and rotation of
the coordinate axes random fields with ellipsoidal covariance structure can be
reduced to isotropic random fields.

Gandin and Kagan (1976) suggest a covariance model similar to the second type for
use in meteorology and climatology:20

Cov [λ, τ] = σ2ρ
(∣∣(λ/v) + τ

∣∣) (4)

where λ as before is the relative distance between to points in the river,τ the time lag
and v is a velocity and h/v can be interpreted as a time of travel. The expression has
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its root in the so called Taylor’s hypothesis for turbulent flow also known as the Taylor
“frozen turbulence” hypothesis. We will here assume that the process Z(l ,t) has this
type of isotropic space-time covariance function.
Z(l ,t) describes the instantaneous inflow at a point in a river. The important variable

is the integrated process Z̄ (A, t), i.e. the normalised discharge of a river with a basin of5

size A. We derive it by integration of Z(l ,t) from the most distant point in the river (l=0)
down to its outlet at lA. In accordance with the formulation of the covariance function
Eq. (4) we replace the distance by the time of travel (time of concentration) TcA=LA/v
along the river distance LA. The integrated process is thus expressed by:

Z̄ (A, t) = Z̄ (TcA, t) =
1
TcA

t∫
t−TcA

Z (t′, t)dt′ =
1
TcA

t+TcA∫
t

Z (t − t′)dt′ (5)
10

This formula coincides in form with a system interpretation of the rational method
(Singh, 1988, p. 123) if runoff is expressed in terms of flow per area, i.e. a unit pulse
of duration TcA and height 1/TcA. There is of course an important difference in the
fact that we here deal with the inflow to the river and not directly the rainfall like in
the rational method. It is anyhow a simplification that neglects the dynamics and non-15

linearity of river flow. The only argument for doing this is the Principle of Parsimony
as formulated by Tukey (1961): it may pay not to try to describe in the analysis the
complexities that are really present in the situation. He stresses the importance of re-
considering a model structure towards a simpler representation, which might improve
the performance of the estimation method.20

The mean value of the process Z̄ (TcA, t) will be independent of time of concentration
as it represents a normalised value (cf. Eq. 3). The variance-covariance, however, will
change with changing time of concentration. The covariance function for the integrated
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process is derived as:

Cov
(
Z̄ (TcA, t) , Z̄ (TcA, t + τ)

)
= CovA (τ) =

1

T 2
cA

t+TcA∫
t

t+TcA+τ∫
t+τ

σ2
Zρ (t′ − t′′)dt′dt′′ (6)

This type of double integral can be easily transformed to a single integral by a simple
variable transformation (e.g. Gottschalk, 1993a). A more general method for simplifica-
tion is to apply the following relation between the covariance for areas (lines as special5

cases) and the underlying point covariance (Matérn, 1960):

CovA (τ) =

max(h)∫
min(h)

Cov
(
|h|
)
f (h)dh = E

[
Cov

(
|h|
)]

(7)

where f (h) is the probability density function of distances h chosen at random between
the two line segments at a specified distance τ between each other. For the special
case of τ=0–f (h) is the density function of all possible distances within a line segment10

of length T which has the well known expression: f (h)= 2
T

(
1−h

T

)
. The distribution

function for a more general case of random distances between two line segments of
equal length T shifted by the distance τ is derived using general results by Ghosh
(1951):

f1 (h) = 1
TcA

(
1 + h−τ

TcA

)
; (τ − TcA) ≤ h ≤ τ

f2 (h) = 1
TcA

(
1 − h−τ

TcA

)
; τ < h ≤ (τ + TcA)

(8)
15

When integrating this distribution in accordance with Eq. (7) three cases have to be
distinguished namely i) τ=0; ii) 0<τ≤TcA; and iii) τ>TcA:
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i) τ=0;

CovA (0) = VarA = σ2
Z

{
0∫

−TcA
ρ (−h) f1 (h)dh +

TcA∫
0
ρ (h) f2 (h)dh

}
= 2σ2

Z

TcA∫
0
ρ (h) f2 (h)dh

(9a)

ii) 0<τ≤ TcA;

CovA (τ) = σ2
Z

{
0∫

−(TcA−τ)
ρ (−h) f1 (h)dh +

τ∫
0
ρ (h) f1 (h)dh+

TcA+τ∫
τ

ρ (h) f2 (h)dh

} (9b)

iii) τ> TcA;5

CovA (τ) = σ2
Z


τ∫

τ−TcA

ρ (h) f1 (h)dh +

τ+TcA∫
τ

ρ (h) f2 (h)dh

 (9c)

Let us exemplify the derivations above by assuming a simple exponential correlation
function:

ρ (h) = exp
(
−h

/
k
)

(10)

where k is a time constant. The following expression is derived:10

i) τ=0;

CovA (0) = γ (A) = σ2
A = 2σ2

Z

(
k
TcA

)2 {TcA
k

+ e−TcA/k − 1
}

(11a)
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ii) 0<τ≤TcA;

CovA (τ) = 2σ2
Z

(
k
TcA

)2 {TcA − τ
k

+ 1
2

(
e(τ−TcA)/k + e−(τ+TcA)/k

)
− e−τ/k

}
(11b)

iii) τ>TcA;

CovA (τ) = σ2
Z

(
k
TcA

{
1 − e−TcA/k

})2

e−(τ−TcA)/k (11c)

The time constant k characterises the scale of persistence in the inflow to the river5

system i.e. the hillslope flow is approximated by a simple linear reservoir. This con-
stant thus describes the dynamics of the runoff process in contrast to the constant K
introduced in Eq. (1), which describes the characteristic spatial scale of variation in
runoff formation. The two limiting cases of Eqs. (11a–c) are when k→0 and k→∞,
respectively. In the first case the correlation function Eq. (9) turns into a Dirac’s delta10

function δ(λ) for λ=0, i.e. the characteristic of a process without memory. Applying the
relationships Eqs. (12a–c) to this situation we find:

i) τ=0;

CovA (0) = σ2
A = σ2

Z

/
TcA (12a)

ii) 0<τ≤TcA;15

CovA (τ) = σ2
Z

TcA − τ

T 2
cA

(12b)

iii) τ>TcA;

CovA (τ) = 0 (12c)
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i.e. a moving average process over a time period TcA. For the second case with a very
large memory (k large compared to TcA) the variance is constant equal to σ2

Z .
Equation (11a), with Eq. (12a) as a special case, is thus the variance function for

instantaneous runoff from an area of size A. It describes how the variance of runoff
alters with this size (time of concentration TcA). Taking the square root of this expres-5

sion yields the corresponding reduction factor. In a system terminology it represents
a combination between linear reservoirs entering into a linear channel or as first or-
der autoregressive processes combined with a moving average one. Equations (11b,
c) (Eqs. 12b, c) in their turn represent the auto-covariance functions of instantaneous
runoff of a basin of size A.10

Hydrological observations of runoff are, as a rule, limited to daily averages and the
derived expressions are not directly applicable as they concern instantaneous runoff.
For the observed data for a certain duration D we need to integrate these equations in
the time domain to this specific duration. We will omit detailed derivations in the text as
the principle is the same as described earlier, i.e. using Eq. (7) to develop frequency15

functions of distances between line segments (river branches, time intervals) f (h) and
then integration schemes in accordance with Eq. (8). The resulting equations of such
derivations are shown in Appendix B for the variance functions for a basin of size A
and duration D(B1), the auto-covariance function for a basin of size A and time lags
nD, n=0,1,. . . (B2), and cross-covariance function between two areas with sizes A120

and A2 and time lags nD, n=0,1,. . . (B5). Some intermediate results are also shown.
To simplify the notations dimensionless variables δ=D/k and η=T cA/k replace the
duration D (time scale) and TcA (space scale).

The random model, in principle, allows a reproduction of all statistical characteristics
of the runoff data from the Moselle basin referred to in the first section of this paper.25

The theoretical model shows how they are interrelated. The parameters of the model
can be determined by fitting the respective theoretical function to the empirical ones,
established from the observed data. We will concentrate these efforts to the variance
function (B1), which expresses the dependence in the variance of the time of concen-
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tration TcA (area) and time duration D. The other functions will be used as a diagnostic
test of model assumptions.

5 Fitting the model for the normalized variable

The second order moment of the normalized variable Z equals the coefficient of vari-
ation of the original variable Xaveraged. Figure 3 showed the dependence of the5

coefficient of variation on area A estimated from the observed runoff data on basin
area for different durations D (an hour, a day, five days, a month and a year). In case
of so-called simple scaling this parameter should be constant but the pattern of varia-
tion seen is indeed complex. In principle we should be able to model the behaviour in
accordance with the variance function (B1), depending on the dimensionless variables10

δ=D/k and η=T cA/k, respectively, and containing one parameter σZ equal to the coef-
ficient of variation for instantaneous inflow to a river branch. Following the development
along different branches a mirrored pattern of the variation of the first order moment
(although with an increased scatter) can be identified, i.e. high runoff values show low
coefficient of variation and vice versa. It was also found that the decay in the time15

dependence was poorly described by the assumed simple exponential function for the
instantaneous point correlation function (Eq. 10). Two time scales could be identified
(cf. Fig. 4) – one in the order of a day and another in the order of a month, with a dom-
ination of the first one for short time lags. To account for this fact the point exponential
correlation function is modified as ρ (h)=w exp

(
−h

/
k1

)
+ (1−w) exp

(
−h

/
k2

)
, where20

w is a weight coefficient. The variance function (B1) needs to be modified accordingly.
As all operations for the derivation of this function from the point correlation function
are linear the modified variance function is derived as two weighted components as in
B1 with weights w and (1−w) and with time variables δ1=D/k1, δ2=D/k2 and time of
concentration variables η1=TcA/k1 and η2=TcA/k2, respectively.25

For the variables ηi ,i=1,2 and the point standard deviation σZ the following rela-
tions are proposed to take account of the dependence on basin area and mean runoff,
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respectively:

η1k1 = η2k2 = TcA = a + b ln (A)
σZ = c (1 + d ×mx)

(13)

It is assumed that the time of concentration is proportional to the logarithm of the basin
area A and that the coefficient of variation is linearly proportional to the mean annual
runoff mX .5

We thus obtain a model for the description of the dependence of the coefficient
of variation on basin area A and duration D containing seven parameters, namely
w, k1, k2, a, b, c, d. Some of these parameters might vary with location, and should
therefore develop along river branches. Here we for the time being assume a set of
global parameters for the whole Moselle basin and determine them so that an optimal10

fit in the least square sense is obtained with the scatter of data in Fig. 6. A downhill
simplex method (Press et al., 1992, p. 326–330) was applied for the search of optimal
parameters, with the following result:

w = 0.80
δ1 = D

/
0.63

δ2 = D
/

40.0
η1k1 = η2k2 = TcA = −10.44 + 2.77 ln (A) ; A > 43.5
σZ = 2.70 (1 − 0.012mx)

(14)

The estimated parameters confirm the impression of a decrease in the coefficient vari-15

ation with the increase of the mean runoff and the existence of two characteristic time
scales of the correlation function one a little less than a day and the other about one
and a half month. The estimation error obtained for this set of parameters was 0.29.

The parameters allow now an estimation of the coefficient of variation as a function
of basin area A and duration D. The resulting relationships are shown in Fig. 6 where20

observed values are compared with those estimated. The estimated is done for each
grid cell in the digital map forming the grey background of the graphs. The proposed
model is able to describe the main features of the dependence of the coefficient of
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variation Cv of both the area and the duration. Some outlying observations of high Cv
are, however, noted along branches with a low runoff contribution. The corresponding
maps can be constructed and an illustration for Cv for D=1 day and D=1 month is
found in the Appendix A.

6 Testing auto- and cross-correlation5

The approach developed here is based on the existence of a covariance function along
the river network. We have here chosen to determine the basic parameters in this
covariance structure through the dependence of the coefficient of variation on the area
A and duration D. It thus remains to be shown that the main features of this covariance
structure are reproduced. Here we will do this by comparing the empirical statistical10

properties shown earlier in Figs. 4a to d. and those obtained by the model with the
parameters determined in the previous section. The covariance includes duration as
well as area, which would mean that we should be able to model the autocorrelation at
a site in a river for different durations D, as well as the cross-correlation between sites
along a river branch.15

A comparison of empirical and model correlation functions carried out here should
not be seen in the light of a formal test. The theoretical derivations developed herein
are in its infancy and not yet ready for such formal procedures. This comparison is
rather to be seen as a first diagnostic to indicate if the assumptions make sense. We
will also here use branch 4 as an illustration when comparing the theoretical derivation20

with the empirical functions in Fig. 4. Figure 7a shows the estimated autocorrelation
(B2) for durations of an hour, a day, five days and a month for the central site on this
branch, and Fig. 7b the autocorrelation function for one day duration for all stations
along the branch. Figure 7c in a similar way shows the estimated cross-correlation
function (B5) between the central and the outlet sites for different durations and Fig. 7d25

the cross-correlation function between the outlet site and upstream stations along the
same river branch for a duration of one day.
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In general the agreement is acceptable. The empirical and modelled correlation func-
tions show the same main features. There are of course details both at very small and
large time scales that are not yet grasped by the model. It describes well the behaviour
of the empirical autocorrelation functions for different durations in time. However, the
model is not able to reproduce the details of the spatial nonsystematic dependence of5

the empirical correlation functions along branches. The deviation between the model
and empirical functions is largest in small basins. This can to a certain extent be traced
back to the empirical relation of the time of concentration variable to ln(A) (Eq. 14),
which contains a lower bound (∼43 km2) .

We note that it was necessary to compose the theoretical model of two parts – one10

for small and the other for large time lags represented by the two parameters k1 and
k2, respectively and a weight coefficient w. For the time being we assumed these pa-
rameters to be the same for the whole of the Moselle basin. For larger sub-basins this
can be an acceptable approximation. For small basins with specific local conditions,
this might not be the case especially for the quickly decaying part of the correlation15

functions connected to the parameter k1. This is confirmed for some few small basins
utilised here (a600101 and a605102 along branch 4). We interpret the large-scale
component as a characteristic of the baseflow and seasonal climatic conditions for the
region. The slow decaying part of the correlation functions related to the parameter
k2 is rather stable. The weight coefficient w balancing the local and regional influence20

seems also to be relatively constant for larger basins, while small ones may show de-
viations from this regional value possibly due to different baseflow contributions. The
parameters a, b, c and d are all interpreted to be of a regional character for the time
being.

7 Discussion and conclusions25

The problem of mapping runoff characteristics herein has been divided into two steps.
Firstly the first order moment (the long term mean value) is analysed and mapped ap-
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plying an interpolation procedure for river runoff proposed by Gottschalk (1993b). In
a second step a simple random model for the river instantaneous point runoff process
normalised with respect to the long term mean is proposed, which allows the derivation
of the time-space variance-covariance function of the inflow to the river network. This
function is then used to predict how the coefficient of variation develops from headwa-5

ters of the different river branches down to the river mouth. The runoff characteristics in
a downstream point, here the first and second order moments, are thus derived by in-
tegration over the upstream contributing river network. The results are thus consistent
in this respect and furthermore are able to reproduce the main features of the space-
time covariance within a basin. The observation data are handled in the frame of a10

hydrological information system HydroDem (Leblois and Sauquet, 2000), which allows
displaying the results either in the form of area dependence of moments along the river
branches to the basin outlet or as a map of the variation of the moments across the
basin space.

The runoff variation across space is first of all explained by the variation in the av-15

erage runoff formation. For the Moselle River basin (French part), studied here, the
characteristic length scale of this process has been identified as 50 km. The basic
parameters in the stochastic model for the second order moment express the charac-
teristic scales in time. Two characteristic temporal scales were identified – one related
to the dynamics of the runoff formation process in the order of a day, k1, and another20

related to the persistence in baseflow and climatic condition in the order of a month,
k2.

While the influence of the time scale on auto- and cross-correlation functions is well
in agreement between empirical and modelled data, the influence of the spatial scale,
expressed as a “time of concentration” is more complex and not yet fully grasped by25

the model. The “time of concentration” is here a measure of the variance reduction
in space, which corresponds to a similar reduction in time. A possible reason for
the poorer fit might be the assumption of one global set of parameters for the whole
Moselle basin. Further studies are needed to verify if allowing the parameters vary
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between river branches (in particular the small time scale parameter k1 and the weight
coefficient w balancing the influence of the two time scales) can improve the results.
However, aggregation rules need to be elaborated for this purpose. Another uncer-
tainty is related to the assumption of the time-space correlation function Eq. (5) utilised
here. The theoretical implications of this needs to be further elaborated.5

A random model, like the one developed here, involves directly the statistical prop-
erties of runoff and their dependence on time and space. Traditionally, in the so-called
derived distribution function approach (Eagleson, 1972), the ambition is to reduce the
parameters in such a random model to those with a physical or at least a concep-
tual interpretation. So far the physical/conceptual models used for this purpose are10

quite simplistic. A simplistic approach is also adopted here where the basic conceptual
model consists of a linear reservoir combined with a linear channel. The advantage
is the ability of the model to preserve the statistical properties of the observed data in
space and time. The simple representation might also improve the performance of the
estimation method, a topic that for the time being has not been studied in any depth.15

Distributed modelling is another expanding activity in hydrology that lately also has
been used for mapping purposes (e.g. Beldring et al., 2002). A fair comparison be-
tween the two approaches is possible, however, only if the diagnostics used for evalu-
ating the performance of distributed models is extended to the ability of preserving of
time-space statistical and scale dependence. The preservation of time-space statis-20

tical and scale properties is of outmost importance for further developments for mod-
elling and mapping of runoff for different durations as herein, and extremes (floods and
drought) for different durations.

Appendix A

See Fig. A1.25
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Appendix B

B1 Variance function for a basin area A and duration D.

δ=D/k; η=T cA/k;τ’=τ/k;

f1 (λ) = 1
δ

(
1 + λ−τ′

δ

)
;

(
τ′ − δ

)
≤ λ ≤ τ′

f2 (λ) = 1
δ

(
1 − λ−τ′

δ

)
; τ′ < λ ≤

(
τ′ + δ

) (B1)

i) 0<δ≤η;5

γA (δ)=4σ2
Z (δη)−2


δ2η−δ3

/
3

2
+1

2

(
e(δ−η)+e−(δ+η)

)
+1−δ−e−η−e−δ

 (B2a)

ii) δ>η;

γA (δ)=4σ2
Z (δη)−2


δη2−η3

/
3

2
+1

2

(
e−(δ−η)+e−(δ+η)

)
+1−η−e−η−e−δ

 (B2b)

B2 Auto-covariance function for a basin area A and time lag nD.

δ=D/k; η=T cA/k;10

f (λ) = 1
δ

( λ
δ − n + 1

)
; (n − 1)δ ≤ λ ≤ nδ

f (λ) = 1
δ

(
n + 1 − λ

δ

)
; nδ ≤ λ ≤ (n + 1)δ

(B3)

i) (n+1)δ≤η

CovA (nδ)=2σ2
Z (δη)−2

{
δ2 (η−nδ)+

(
eδ/2−e−δ/2

)2 (
1
2e

−(nδ+η)+1
2e

(nδ−η)−enδ
)}

(B4a)
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ii) n δ≤η<(n+1)δ

CovA (nδ)=4σ2
Z (δη)−2

{
e−nδ+1

4

(
e−((n−1)δ+η)+e((n−1)δ−η)+e−((n+1)δ+η)+e(−(n+1)δ+η)

)
−1

2

(
e−(n−1)δ+e−(n+1)δ+e(nδ−η)+e−(nδ+η)

)
−η

/
2+η3

/
12

+δ (1+n)
/

2+
(
δ2η

(
n2+2n−1

)
−δη2 (n+1)−δ3

(
1
3n

3+n2−n+1
3

))/
4
} (B4b)

iii) (n-1)δ≤η<nδ

CovA (nδ)=4σ2
Z (δη)−2

{
e−nδ+1

4

(
e−((n−1)δ+η)+e((n−1)δ−η)+e−((n−1)δ−η)+e(−(n+1)δ+η)

)
−1

2

(
e−(n−1)δ+e−(n+1)δ+e(−nδ+η)+e−(nδ+η)

)
+η

/
2−η3

/
12

+δ (1−n)
/

2−
(
δ2η

(
n2−2n+1

)
−δη (n−1)−δ3

(
1
3n

3−n2+n−1
3

))/
4
} (B4c)

iv) (n-1)δ>η5

CovA (nδ) = σ2
Z

{
(δη)

(
1 − e−η) (eδ/2 − e−δ/2

)}2
e−(nδ−η) (B4d)

B3 Covariance between two nested catchments A1 and A2 (A1<A2)

(Gottschalk, 1993a)
η1=TcA1/k; η2=TcA2/k;

f1 (λ) = 1
η2

(
1 + λ

η1

)
; −η1 ≤ λ ≤ 0

f2 (λ) = 1
η2

; 0 ≤ λ ≤ (η2 − η1)

f3 (λ) = 1
η2

(
1 − λ

η1

)
; (η2 − η1) < λ ≤ η2

(B5)

10

Cov (A1, A2,0)=2σ2
Z (η1η2)−1

{
η1+

1
2e

−η1+1
2 (1−η1+η2)

(
e−η2−e−(η2−η1)

)
−1

2

}
(B6)
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B4 Cross-covariance between two nested catchments A1 and A2 (A1<A2) for instan-
taneous runoff with lag τ′.

η1=TcA1/k; η2=TcA2/k;τ′=τ/k;

f1 (λ) = 1
η2

(
1 + λ−τ′

η1

)
;

(
τ′ − η1

)
≤ λ ≤ τ′

f2 (λ) = 1
η2

; τ′ ≤ λ ≤
(
η2 − η1 + τ′

)
f3 (λ) = 1

η2

(
1 − λ−τ′

η1

)
;

(
η2 − η1 + τ′

)
< λ ≤

(
η2 + τ′

) (B7)

i) τ=0;5

Cov (A1, A2, 0) = 2σ2
Z (η1η2)−1

{
η1 +

1
2e

−η1 + 1
2 (1 − η1 + η2)

(
e−η2 − e−(η2−η1)

)
− 1

2

}
(B8a)

ii) 0<τ≤η1

Cov (A1, A2, τ)=2σ2
Z (η1η2)−1

{
(η1−τ)+1

2e
−(η1−τ) +1

2 (1−η1+η2)
(
e−(η2+τ)−e−(η2−η1+τ)

)
−1

2e
−τ
}
(B8b)

iii) τ>η1;

Cov (A1, A2, τ)=σ2
Z (η1η2)

{
e−(η2−η1)−e−η2

}
{1− (1−η1+η2)e−η2}e−(τ−η2) (B8c)10

B5 Cross-covariance between two nested catchments A1 and A2 (A1<A2) for runoff
with time lag nD.

δ=D/k; η1=TcA1/k; η2=TcA2/k;

f (λ) = 1
δ

( λ
δ − n + 1

)
; (n − 1)δ ≤ λ ≤ nδ

f (λ) = 1
δ

(
n + 1 − λ

δ

)
; nδ ≤ λ ≤ (n + 1)δ

(B9)
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i) δ≤η1, n=0

Cov (A1, A2, 0)=2σ2
Z

(
δ2η1η2

)−1 {
1+ δ2 (η1−δ

/
3
)
+e−(η1−δ)−e−δ− (δ+1)e−η1−δ

+ (1−η1+η2)
(
e−(δ+η2)−e−(δ−η1+η2)

)
− (1 − δ) (1−η1+η2)

(
e−η2−e−(η2−η1)

)} (B10a)

ii) δ>η1, n=0

Cov (A1, A2, 0)=2σ2
Z

(
δ2η1η2

)−1 {
1+ η2

1

(
δ−η1

/
3
)
+e(η1−δ)−e−δ− (δ+1)e−η1+δ −2η1

+ (1−η1+η2)
(
e−(δ+η2)−e−(δ+η1)

)
− (1−δ) (1−η1+η2)

(
e−η2−e−(η2−η1)

)} (B10b)

iii) (n+1) δ≤η1, n≥15

Cov (A1, A2, nD)=2σ2
Z

(
δ2η1η2

)−1
{

δ2 (η1−nδ)+1
2

(
eδ/2−e−δ/2

)2 [
e−(nδ−η2)−e−nδ

+ (1−η1+η2)
(
e−(nδ+η2)−e−(η2−η1+nδ)

) ]} (B10c)

iv) (n−1)δ>η1, n>1

Cov (A1, A2, nD) = σ2
Z

(
δ2η1η2

)−1 (
eδ/2 − e−δ/2

)2 (
e−(η2−η1) − e−η2

)
(
1 − (1 − η1 + η2)e−η2

)
e−(nδ−η2)

(B10d)

References

Beldring, S., Roald, L. A., and Voksø, A.: Avrenningskart for Norge (Runoff map of Norway, in10

Norwegian), Norwegian Water and Energy Directorate Report, 2, Oslo, Norway, 2002.
Eagleson, P. S.: Dynamics of Flood Frequency, Water Resour. Res., 8(4), 878–898, 1972.
Gandin, L. S. and Kagan, P. L.: Statisticheskie metody dlya interpretatsii meteorologicheskykh

dannykh. (Statistical methods for interpretation of meteorological data, in Russian), Gidrom-
eteoizdat, Leningrad, 1976.15

324

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/299/hessd-3-299_p.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/299/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 299–333, 2006

Mapping runoff
statistics

L. Gottschalk et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Gergov, G. I.: Zakonomernosti v izmenenii modulya stoka (Regularities in the variation of spe-
cific runoff, in Russian ), Meteorologiya i Gidrologiya, 8, 75–81, 1972.

Gosh, B.: Random distances within a rectangle and between two rectangles, Bull. Calcutta
Math. Soc., 43, 19–24, 1951.

Gottschalk, L.: Correlation and covariance of runoff, Stochastic Hydrol. Hydraulics, 7, 85–101,5

1993a.
Gottschalk, L.: Interpolation of runoff applying objective methods, Stochastic Hydrol. Hy-

draulics, 7, 269–281, 1993b.
Krasovskaia, I. and Gottschalk, L.: Stability of river flow regimes, Nordic Hydrology, 23, 137–

154, 1992.10

Leblois, E. and Sauquet, E.: Grid elevation models in hydrology – Part 1: Principles and a
literature review; Part 2: HydroDem, User’s manual, Cemagref, Technical Notes, Lyon, 80
pp., 2000.

Matérn, B.: Spatial Variation, Meddelanden från Statens Skogsforskiningsinstitut, 49(5), 1960.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical recipes in15

Pascal, Cambridge University Press, N.Y., 1992.
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Fig. 1. Schematised river network of the Moselle basin down to Hauconcourt (a793061) with
eight main branches and 17 gauging stations used in the study.
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Fig. 2. The estimated first moments around zero of the Moselle discharge data plotted towards
basin area A in a double logarithmic diagram. This first order moment (the long term mean
values) does not depend on the duration D.
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Fig. 3. The estimated coefficient of variation of runoff for the Moselle discharge data plotted to-
wards basin area A for different durations D. This normalised second order moment decreases
with the increasing duration from an hour (the highest values) to a day, five days, a month and
a year (the lowest values).
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Fig. 4. Estimated empirical correlation functions in and along branch 4 (the Meurthe River)
down to the outlet (station a793061): (a) the autocorrelation function for the central site
(a627101) for different durations; (b) the same function for one hour duration for the five sites
along branch 4; (c) the cross-correlation between the central and outlet sites for different du-
rations and (d) the cross-correlation between the outlet and upstream sites. (In (a) and (c) the
curves for 1 h and 1 day coincide except for very short time lags and the first one is therefore
hidden behind the second one). There is no systematic difference between the headwater and
downstream stations in graphs (b) and (c).
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Fig. 5. The area dependence of the first order moment estimated and modelled at observations
sites and mapped along the river net (cf. corresponding map in Appendix A). Area dependences
develop along river branches towards a common value at the outlet.
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Fig. 6. Comparison between estimated and modelled area dependence in the coefficient of
variation for different durations of the Moselle discharge data and the values for each grid cell
in the digital map (cf. corresponding maps in Appendix A).
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Fig. 7. Modelled correlation functions in and along branch 4 down to the outlet: (a) the autocor-
relation function for the central site in this river branch for different durations; (b) the same func-
tion for one hour duration for the five sites along the same river branch; (c) the cross-correlation
between the central and outlet sites for different durations and (d) the cross-correlation between
the outlet and upstream sites. The corresponding empirical functions are illustrated in Fig. 4.
(In (a) and (c) the curves for 1 h and 1 day coincide except for very short time lags and the first
one is therefore hidden behind the second one). The mathematical model shows clear differ-
ences between headwater and downstream stations, which was not reflected in the empirical
curves.
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 27

Appendix A, maps 

Fig. A1. Maps.
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